On a Parabolic Harnack Inequality for Markov Chains

نویسنده

  • L. A. BREYER
چکیده

For continuous time Markov chains on a countable state space, we derive a parabolic Harnack inequality using probabilistic methods. We derive some consequences of this inequality for the compactness of parabolic (i.e. spacetime harmonic) functions of the process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces

In this paper, we discuss necessary and sufficient conditions on jumping kernels for a class of jump-type Markov processes on metric measure spaces to have scale-invariant finite range parabolic Harnack inequality.

متن کامل

Notes on Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces

In this paper, we discuss necessary and sufficient conditions on jumping kernels for a class of jump-type Markov processes on metric measure spaces to have scale-invariant finite range parabolic Harnack inequality. AMS 2000 Mathematics Subject Classification: Primary 60J75 , 60J35, Secondary 31C25 , 31C05. Running title: Notes on Heat Kernel Estimates and Parabolic Harnack Inequality

متن کامل

Parabolic Harnack Inequality for the Mixture of Brownian Motion and Stable Process

Let X be a mixture of independent Brownian motion and symmetric stable process. In this paper we establish sharp bounds for transition density of X, and prove a parabolic Harnack inequality for nonnegative parabolic functions of X.

متن کامل

Harnack inequalities and sub-Gaussian estimates for random walks

We show that a-parabolic Harnack inequality for random walks on graphs is equivalent, on one hand, to so called-Gaussian estimates for the transition probability and, on the other hand, to the conjunction of the elliptic Harnack inequality, the doubling volume property, and the fact that the mean exit time in any ball of radius R is of the order R. The latter condition can be replaced by a cert...

متن کامل

Inequality and Kernel Estimates for Functions of the Laplacian on a Graph

This paper introduces certain elliptic Harnack inequalities for harmonic functions in the setting of the product space M × X, where M is a (weighted) Riemannian Manifold and X is a countable graph. Since some standard arguments for the elliptic case fail in this “mixed” setting, we adapt ideas from the discrete parabolic case found in the paper [7] of Delmotte. We then present some useful appli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998